SN 1993J is one of the best studied Type IIb supernovae. Spectropolarimetric data analyses were published over two decades ago at a time when the field of supernova spectropolarimetry was in its infancy. Here we present a new analysis of the spectropolarimetric data of SN 1993J and an improved estimate of its interstellar polarization (ISP) as well as a critical review of ISP removal techniques employed in the field. The polarization of SN 1993J is found to show significant alignment on the q−u plane, suggesting the presence of a dominant axis and therefore of continuum polarization. We also see strong line polarization features, including Hβ, He\,{\sc i} λ5876, Hα, He\,{\sc i} λ6678, He\,{\sc i} λ7065, and high velocity (HV) components of He\,{\sc i} λ5876 and Hα. SN 1993J is therefore the second example of a stripped envelope supernova, alongside iPTF13bvn, with prominent HV helium polarization features, and the first to show a likely HV \halpha contribution. Overall, we determine that the observed features can be interpreted as the superposition of anisotropically distributed line forming regions over ellipsoidal ejecta. We cannot exclude the possibility of an off-axis energy source within the ejecta. These data demonstrate the rich structures that are inaccessible if solely considering the flux spectra but can be probed by spectropolarimetric observations. In future studies, the new ISP corrected data can be used in conjunction with 3D radiative transfer models to better map the geometry of the ejecta of SN 1993J.
We report a multi-wavelength study of two evolved planetary nebulae (PNs) M 2-55 and Abell 2. Deep optical narrow-band images ([O III], H?, and [N II]) of M 2-55 reveal two pairs of bipolar lobes and a new faint arc-like structure. This arc-shaped filament around M 2-55 appears a well-defined boundary from southwest to southeast, strongly suggesting that this nebula is in interaction with its surrounding interstellar medium. From the imaging data of Wide-field Infrared Survey Explorer (WISE) all-sky survey, we discovered extensive mid-infrared halos around these PNs, which are approximately twice larger than their main nebulae seen in the visible. We also present a mid-resolution optical spectrum of M 2-55, which shows that it is a high-excitation evolved PN with a low electron density of 250 cm^-3. Furthermore, we investigate the properties of these nebulae from their spectral energy distributions (SEDs) by means of archival data.
Micro-physical processes on interstellar dust surfaces are tightly connected to dust properties (i.e. dust composition, size and shape) and play a key role in numerous phenomena in the interstellar medium (ISM). The large disparity in physical conditions (i.e. density, gas temperature) in the ISM triggers an evolution of dust properties. The analysis of how dust evolves with the physical conditions is a stepping-stone towards a more thorough understanding of interstellar dust. The aim of this paper is to highlight dust evolution in the Horsehead Nebula PDR region. We use Spitzer/IRAC (3.6, 4.5, 5.8 and 8 {\mu}m), Spitzer/MIPS (24 {\mu}m) together with Herschel/PACS (70 and 160 {\mu}m) and Herschel/SPIRE (250, 350 and 500 {\mu}m) to map the spatial distribution of dust in the Horsehead over the entire emission spectral range. We model dust emission and scattering using the THEMIS interstellar dust model together with the 3D radiative transfer code SOC. We find that the nano-grains dust-to-gas ratio in the irradiated outer part of the Horsehead is 6 to 10 times lower than in the diffuse ISM. Their minimum size is 2 to 2.25 times larger than in the diffuse ISM and the power-law exponent of their size distribution, 1.1 to 1.4 times lower than in the diffuse ISM. Regarding the denser part of the Horsehead, it is necessary to use evolved grains (i.e. aggregates, with or without an ice mantle). It is not possible to explain the observations using grains from the diffuse medium. We therefore propose the following scenario to explain our results. In the outer part of the Horsehead, all the nano-grains have not yet had time to re-form completely through photo-fragmentation of aggregates and the smallest of the nano-grains that are sensitive to the radiation field are photo-destroyed. In the inner part of the Horsehead, grains most likely consist of multi-compositional, mantled aggregates.
Polaris is the nearest Cepheid to us and as such holds a special place in our understanding of Cepheids in general and the Leavitt Law. In the past couple of decades, we have learned many new things about the star as a Cepheid and as the primary component of a multiple star system. As such, we are more precisely measuring the mass, radius and evolution of Polaris. However, as we learn more, it is becoming clear that we understand less. There is evidence that Polaris is much less massive than stellar evolution models suggest and that Polaris is a much younger star than its main sequence companion. In this work, we review some of the recent measurements and their connections with past studies. We then present new stellar evolution models and populations synthesis calculations to compare with the new mass measurements by Evans et al. (2018). We find that the mass discrepancy for Polaris is about 50\%. We also find that there is a likely age discrepancy between Polaris and its companion, but that there is also a very small probability that the discrepancy is not real.
Nova shells can provide us with important information on their distance, their interactions with the circumstellar and interstellar media, and the evolution in morphology of the ejecta. We have obtained narrow-band images of a sample of five nova shells, namely DQHer, FHSer, TAur, V476Cyg, and V533Her, with ages in the range from 50 to 130 years. These images have been compared with suitable available archival images to derive their angular expansion rates. We find that all the nova shells in our sample are still in the free expansion phase, which can be expected, as the mass of the ejecta is 7-45 times larger than the mass of the swept-up circumstellar medium. The nova shells will keep expanding freely for time periods up to a few hundred years, reducing their time dispersal into the interstellar medium.
Cataclysmic variables are among the photometrically most unstable stars in the zoo of stellar objects, exhibiting light variations on all time-scales between millennia and seconds. The literature is full of reports on variable phenomena which often require independent confirmation before they can be accepted as established facts. In this contribution I investigate accounts on miscellaneous variable features observed in six cataclysmic variables, drawing for this purpose largely on archival data, most of which have not been investigated in detail in the past, and complementing these data with some new observations. This enabled to confirm and expand upon some hitherto unconfirmed features in the light curves of these star, as well as the rejection of some others, while in still other cases an unambiguous answer to questions arising from previous papers was not possible.
Context. The fate of a massive star during the latest stages of its evolution is highly dependent on its mass-loss rate/geometry and therefore knowing the geometry of the circumstellar material close to the star and its surroundings is crucial. Aims. We aim to study the nature (i.e. geometry, rates) of mass-loss episodes. In this context, yellow hypergiants are great targets. Methods. We analyse a large set of optical/near-infrared data, in spectroscopic and photometric (X-shooter/VLT), spectropolarimetric (ISIS/WHT), and interferometric GRAVITY-AMBER/VLTI) modes, toward the yellow hypergiant IRAS 17163-3907. We present the first model-independent reconstructed images of IRAS 17163-3907 at these wavelengths at milli-arcsecond scales. Lastly, we apply a 2D radiative transfer model to fit the dereddened photometry and the radial profiles of published VISIR images at 8.59 {\mu}m, 11.85 {\mu}m and 12.81 {\mu}m simultaneously, adopting the revised Gaia distance (DR2). Results. The interferometric observables around 2 {\mu}m show that the Br{\gamma} emission is more extended and asymmetric than the Na i and the continuum emission. In addition to the two known shells surrounding IRAS 17163-3907 we report on the existence of a third hot inner shell with a maximum dynamical age of only 30 yr. Conclusions. The interpretation of the presence of Na i emission at closer distances to the star compared to Br{\gamma} has been a challenge in various studies. We argue that the presence of a pseudophotosphere is not needed, but it is rather an optical depth effect. The three observed distinct mass-loss episodes are characterised by different mass-loss rates and can inform the theories on mass-loss mechanisms, which is a topic still under debate. We discuss these in the context of photospheric pulsations and wind bi-stability mechanisms.
High-mass X-ray binaries (HMXBs) are exceptional astrophysical laboratories that offer a rare glimpse into the physical processes that govern accretion on compact objects, massive-star winds, and stellar evolution. In a subset of the HMXBs, the compact objects accrete matter solely from winds of massive donor stars. These so-called wind-fed HMXBs are divided in persistent HMXBs and supergiant fast X-ray transients (SFXTs) according to their X-ray properties. While it has been suggested that this dichotomy depends on the characteristics of stellar winds, they have been poorly studied. With this investigation, we aim to remedy this situation by systematically analyzing donor stars of wind-fed HMXBs that are observable in the UV, concentrating on those with neutron star (NS) companions. We obtained Swift X-ray data, HST UV spectra, and additional optical spectra for all our targets. Our multi-wavelength approach allows us to provide stellar and wind parameters for six donor stars (four wind-fed systems and two OBe X-ray binaries). The wind properties are in line with the predictions of the line-driven wind theory. Three of the donor stars are in an advanced evolutionary stage, while for some of the stars, the abundance pattern indicates that processed material might have been accreted. When passing by the NS in its tight orbit, the donor star wind has not yet reached its terminal velocity but it is still significantly slower; its speed is comparable with the orbital velocity of the NS companion. There are no systematic differences between the two types of wind-fed HMXBs (persistent versus transients) with respect to the donor stars. For the SFXTs in our sample, the orbital eccentricity is decisive for their transient X-ray nature. Based on the orbital parameters and the further evolution of the donor stars, the investigated HMXBs will presumably form Thorne-\.Zytkow objects in the future.
All novae recur, but only a handful have been observed in eruption more than once. These systems, the recurrent novae (RNe), are among the most extreme examples of novae. RNe have long been thought of as potential type Ia supernova progenitors, and their claim to this 'accolade' has recently been strengthened. In this short review RNe will be presented within the framework of the maximum magnitude-rate of decline (MMRD) phase-space. Recent work integrating He-flashes into nova models, and the subsequent growth of the white dwarf, will be explored. This review also presents an overview of the Galactic and extragalactic populations of RNe, including the newly identified 'rapid recurrent nova' subset - those with recurrence periods of ten years, or less. The most exciting nova system yet discovered - M31N 2008-12a, with its annual eruptions and vast nova super-remnant, is introduced. Throughout, open questions regarding RNe, and some of the expected challenges and opportunities that the near future will bring are addressed.
The recently discovered binary system LB-1 has been reported to contain a black hole (BH). The evidence for the unprecedentedly high mass of the unseen companion comes from reported radial velocity (RV) variability of the Hα emission line, which has been proposed to originate from an accretion disk around a BH. We show that there is in fact no evidence for RV variability of the Hα emission line, and that its apparent shifts instead originate from shifts in the luminous star's Hα absorption line. If not accounted for, such shifts will always cause a stationary emission line to appear to shift in anti-phase with the luminous star. We show that once the template spectrum of a B star is subtracted from the observed Keck/HIRES spectra of LB-1, evidence for RV variability vanishes. Indeed, the data rule out any periodic variability of the emission line with velocity semi-amplitude KHα>1.3kms−1. This strongly suggests that the observed Hα emission does not originate primarily from an accretion disk around a BH, and thus that the mass ratio cannot be constrained from the relative velocity amplitudes of the emission and absorption lines. The nature of the unseen companion remains uncertain, but a "normal" stellar-mass BH with mass seems most plausible. The Hα emission likely originates primarily from circumbinary material, not from either component of the binary
A class of optical transients known as Luminous Red Novae (LRNe) have recently been associated with mass ejections from binary stars undergoing common-envelope evolution. We use the population synthesis code COMPAS to explore the impact of a range of assumptions about the physics of common-envelope evolution on the properties of LRNe. In particular, we investigate the influence of various models for the energetics of LRNe on the expected event rate and light curve characteristics, and compare with the existing sample. We find that the Galactic rate of LRNe is yr−1, in agreement with the observed rate. In our models, the luminosity function of Galactic LRNe covers multiple decades in luminosity and is dominated by signals from stellar mergers, consistent with observational constraints from iPTF and the Galactic sample of LRNe. We discuss how observations of the brightest LRNe may provide indirect evidence for the existence of massive (>40 M) red supergiants. Such LRNe could be markers along the evolutionary pathway leading to the formation of double compact objects. We make predictions for the population of LRNe observable in future transient surveys with the Large Synoptic Survey Telescope and the Zwicky Transient Facility. In all plausible circumstances, we predict a selection-limited observable population dominated by bright, long-duration events caused by common envelope ejections. We show that the Large Synoptic Survey Telescope will observe 20--750 LRNe per year, quickly constraining the luminosity function of LRNe and probing the physics of common-envelope events.
I report two new measures of the sudden change in the orbital period (P) across the nova eruption (ΔP) and the steady period change in quiescence () for classical novae (CNe) DQ Her and BT Mon. The fractional changes (ΔP/P) in parts-per-million (ppm) are −4.460.03 for DQ Her and +39.60.5 for BT Mon. For BT Mon, the ΔP/P value is not large enough (i.e., >1580 ppm) to allow for Hibernation in this system. The {\it negative} ΔP/P for DQ Her is a confident counterexample of the Hibernation model for the evolution of cataclysmic variables. Further, published models of period changes by nova eruptions do not allow for such a negative value, so some additional mechanism is required, with this perhaps being due to asymmetric ejection of material. My program has also measured the first long-term for CNe, with 0.000.02 for DQ Her and −2.30.1 for BT Mon, all with units of 10−11 days/cycle. These can be directly compared to the predictions of the Magnetic Braking model, where the long-term average is a single universal function of . The predicted values are -0.027 for DQ Her and -0.33 for BT Mon. For both novae, the measured is significantly far from the predictions for Magnetic Braking. Further, the observed P for BT Mon imposes an additional {\it positive} period change of +0.6010−11 days/cycle when averaged over the eruption cycle, so this system actually has a long-term {\it rise} in P.
We perform an extensive review of the numerous studies and methods used to determine the total mass of the Milky Way. We group the various methods into seven broad classes, including: i) estimating Galactic escape velocity using high velocity objects; ii) measuring the rotation curve through terminal and circular velocities; iii) modeling halo stars, globular clusters and satellite galaxies with the Spherical Jeans equation and iv) with phase-space distribution functions; v) simulating and modeling the dynamics of stellar streams and their progenitors; vi) modeling the motion of the Milky Way, M31 and other distant satellites under the framework of Local Group timing argument; and vii) measurements made by linking the brightest Galactic satellites to their counterparts in simulations. For each class of methods, we introduce their theoretical and observational background, the method itself, the sample of available tracer objects, model assumptions, uncertainties, limits and the corresponding measurements that have been achieved in the past. Both the measured total masses within the radial range probed by tracer objects and the extrapolated virial masses are discussed and quoted. We also discuss the role of modern numerical simulations in terms of helping to validate model assumptions, understanding systematic uncertainties and calibrating the measurements. While measurements in the last two decades show a factor of two scatters, recent measurements using \textit{Gaia} DR2 data are approaching a higher precision. We end with a detailed discussion of future developments, especially as the size and quality of the observational data will increase tremendously with current and future surveys. In such cases, the systematic uncertainties will be dominant and thus will necessitate a much more rigorous testing and characterization of the various mass determination methods.
We present an analysis of the optical observations of Herbig AeBe star V1686 Cyg, which is associated with a small isolated star-forming region around HAeBe star BD+40∘4124. We observed this star as a part of our project of young eruptive stars investigation. Observations were held on 2.6m telescope of Byurakan Observatory from 2015 to 2017. For this period we obtained V1686 Cyg direct images and 14 medium- and low-resolution spectra. In the course of observations we noticed that this star underwent a not-typical brightness outburst. After data reduction we found that the full rise and decline of V1686 Cyg brightness had almost 3 magnitudes amplitude and lasted about 3 months. We were also able to trace the changes of the stellar spectrum during the outburst, which are correlated with the photometric variations.
We report on high-resolution X-ray spectroscopy of the ultracompact X-ray binary pulsar 4U 1626-67 with Chandra/HETGS acquired in 2010, two years after the pulsar experienced a torque reversal. The well-known strong Ne and O emission lines with Keplerian profiles are shown to arise at the inner edge of the magnetically-channeled accretion disk. We exclude a photoionization model for these lines based on the absence of sharp radiative recombination continua. Instead, we show that the lines arise from a collisional plasma in the inner-disk atmosphere, with T≃107 K and cm^(-3). We suggest that the lines are powered by X-ray heating of the optically-thick disk inner edge at normal incidence. Comparison of the line profiles in HETGS observations from 2000, 2003, and 2010 show that the inner disk radius decreased by a factor of two after the pulsar went from spin-down to spin-up, as predicted by magnetic accretion torque theory. The inner disk is well inside the corotation radius during spin-up, and slightly beyond the corotation radius during spin-down. Based on the disk radius and accretion torque measured during steady spin-up, the pulsar's X-ray luminosity is erg/s, yielding a source distance of 3.5(+0.2-0.3) kpc. The mass accretion rate is an order of magnitude larger than expected from gravitational radiation reaction, possibly due to X-ray heating of the donor. The line profiles also indicate a binary inclination of 39(+20-10) degrees, consistent with a 0.02 Msun donor star. Our emission measure analysis favors a He white dwarf or a highly-evolved H-poor main sequence remnant for the donor star, rather than a C-O or O-Ne white dwarf. The measured Ne/O ratio is 0.46+-0.14 by number. In an appendix, we show how to express the emission measure of a H-depleted collisional plasma without reference to a H number density.
FU Orionis objects are low-mass pre-main sequence stars characterized by dramatic outbursts of several magnitudes in brightness. These outbursts are linked to episodic accretion events in which stars gain a significant portion of their mass. The physical processes behind these accretion events are not yet well understood. The archetypical FU Ori system, FU Orionis, is composed of two young stars with detected gas and dust emission. The continuum emitting regions have not been resolved until now. Here, we present 1.3 mm observations of the FU Ori binary system with ALMA. The disks are resolved at 40 mas resolution. Radiative transfer modeling shows that the emission from FU Ori north (primary) is consistent with a dust disk with a characteristic radius of 11 au. The ratio between major and minor axes shows that the inclination of the disk is 7 deg. FU Ori south is consistent with a dust disk of similar inclination and size. Assuming the binary orbit shares the same inclination angle as the disks, the deprojected distance between north and south components is 0.6'', i.e. 250 au. Maps of 12CO emission show a complex kinematic environment with signatures disk rotation at the location of the northern component, and also (to a lesser extent) for FU Ori south. The revised disk geometry allows us to update FU Ori accretion models (Zhu et al.), yielding a stellar mass and mass accretion rate of FU Ori north of 0.6 M and 3.8 M yr, respectively.
The post-outburst rebrightening phenomenon in dwarf novae and X-ray novae is still one of the most challenging subjects for theories of accretion disks. It has been widely recognized that post-outburst rebrightenings are a key feature of WZ Sge-type dwarf novae, which predominantly have short (≲0.06 d) orbital periods. I found four post-outburst rebrightenings in ASASSN-14ho during its 2014 outburst, whose orbital period has recently measured to be exceptionally long [0.24315(10) d]. Using the formal solution of the radial velocity study in the literature, I discuss the possibility that this object can be an SU UMa-type dwarf nova near the stability border of the 3:1 resonance despite its exceptionally long orbital period. Such objects are considered to be produced if mass transfer occurs after the secondary has undergone significant nuclear evolution and they may be hidden in a significant number among dwarf novae showing multiple post-outburst rebrightenings.
The evolution of neutron star (NS) magnetic field (B-field) has long been an important topic, which is still not yet settled down. Here, we analyze the NS B-fields inferred by the cyclotron resonance scattering features (CRSFs) for the high mass X-ray binaries (HMXBs) and by the magnetic dipole model for the spin-down pulsars. We find that the B-fields of both the 32 NSHMXBs and 28 young pulsars with the supernova remnants follow the log-normal distributions, with the average values of 3.4 * 10^12 G and 4.1 * 10^12 G respectively, which are further verified to come from the same continuous distribution by the statistical tests. These results declaim that the two methods of measuring NS B-fields are reliable for the above two groups of samples. In addition, since the NS-HMXBs have experienced the spin-down phase as the normal pulsars without accretion and then the spin-up phase by accretion, their ages should be about million years (Myrs). Our statistical facts imply that the B-fields of NS-HMXBs have little decayed in their non-accretion spin-down phases of ~ Myrs, as well as in their accretion phases of ~ 0.1Myrs.
The formation of low-mass X-ray binaries (LMXBs) is an ongoing challenge in stellar evolution. The important subset of LMXBs are the binary systems with a neutron star (NS) accretor. In NS LMXBs with non-degenerate donors, the mass transfer is mainly driven by magnetic braking. The discrepancies between the observed mass transfer (MT) rates and the theoretical models were known for a while. Theory predictions of the MT rates are too weak and differ by an order of magnitude or more. Recently, we showed that with the standard magnetic braking, it is not possible to find progenitor binary systems such that they could reproduce -- at any time of their evolution -- most of the observed persistent NS LMXBs. In this Letter we present a modified magnetic braking prescription, CARB (Convection And Rotation Boosted). CARB magnetic braking combines two recent improvements in understanding stellar magnetic fields and magnetized winds -- the dependence of the magnetic field strength on the outer convective zone and the dependence of the Alfv\`en radius on the donor's rotation. Using this new magnetic braking prescription, we can reproduce the observed mass transfer rates at the detected mass ratio and orbital period for all well-observed to-the-date Galactic persistent NS LMXBs. For the systems where the effective temperature of the donor stars is known, theory agrees with observations as well.
We present an extensive Doppler tomography study of the eclipsing novalike EC21178--5417, which exhibits the classic accretion disc signature in the form of double-peak emission lines in its spectrum. Doppler tomograms confirm the presence of a strong, two-armed spiral pattern visible in the majority of the spectral lines studied. This makes EC21178--5417 one of the very few novalikes that show spiral structure in their discs. We also report night-to-night changes in the position and relative strength of the spiral arms, revealing fluctuations on the conditions in the accretion disc.
Spiral density waves are thought to be excited in the accretion discs of accreting compact objects, including Cataclysmic Variable stars (CVs). Observational evidence has been obtained for a handful of systems in outburst over the last two decades. We present the results of a systematic study searching for spiral density waves in CVs, and report their detection in two of the sixteen observed systems. While most of the systems observed present asymmetric, non-Keplerian accretion discs during outburst, the presence of ordered structures interpreted as spiral density waves is not as ubiquitous as previously anticipated. From a comparison of systems by their system parameters it appears that inclination of the systems may play a major role, favouring the visibility and/or detection of spiral waves in systems seen at high inclination.
We produce a set of 72 NIR through UV extinction curves by combining new HST/STIS optical spectrophotometry with existing IUE spectrophotometry (yielding gapless coverage from 1150 to 10000 Angstroms) and NIR photometry. These curves are used to determine a new, internally consistent, NIR through UV Milky Way Mean Curve and to characterize how the shapes of the extinction curves depend on R(V). We emphasize that while this dependence captures much of the curve variability, there remains considerable variation which is independent of R(V). We use the optical spectrophotometry to verify the presence of structure at intermediate wavelength scales in the curves. The fact that the optical through UV portions of the curves are sampled at relatively high resolution makes them very useful for determining how extinction affects different broad band systems, and we provide several examples. Finally, we compare our results to previous investigations.
The nearby SN 1987A offers a spatially resolved view of the evolution of a young supernova remnant. Here we precent recent Hubble Space Telescope imaging observations of SN 1987A, which we use to study the evolution of the ejecta, the circumstellar equatorial ring (ER) and the increasing emission from material outside the ER. We find that the inner ejecta have been brightening at a gradually slower rate and that the western side has been brighter than the eastern side since ~7000 days. This is expected given that the X-rays from the ER are most likely powering the ejecta emission. At the same time the optical emission from the ER continues to fade linearly with time. The ER is expanding at 680\pm 50 km/s, which reflects the typical velocity of transmitted shocks in the dense hotspots. A dozen spots and a rim of diffuse H-alpha emission have appeared outside the ER since 9500 days. The new spots are more than an order of magnitude fainter than the spots in the ER and also fade faster. We show that the spots and diffuse emission outside the ER may be explained by fast ejecta interacting with high-latitude material that extends from the ER toward the outer rings. Further observations of this emission will make it possible to determine the detailed geometry of the high-latitude material and provide insight into the formation of the rings and the mass-loss history of the progenitor.
In recent years, several nova explosions have been detected by Fermi/LAT at E>100 MeV, mainly early after the explosion and for a short period of time. The first evidence of particle acceleration in novae was found in the 2006 eruption of RS Oph, to explain the faster than expected deceleration of the blast wave. As a consequence, emission of high-energy gamma-rays mainly from neutral pion decay and inverse Compton scattering is expected. We aim to understand the early shock evolution, when acceleration of particles can take place, in nova explosions. To achieve this goal, we perform a multiwavelength study of the 2014 outburst of V745 Sco, a symbiotic recurrent nova similar to RS Oph. The analysis of early Swift/XRT observations, simultaneous to the tentative Fermi detection, is combined with Chandra and NuStar data, to get a global picture of the nova ejecta and the red giant wind evolution. Early radio and IR data are also compiled, providing information about the forward shock velocity and its magnetic field. The comparison with the plasma properties of RS Oph shows striking similarities, such as the skipping of the adiabatic phase occurring in supernova remnants, a hint of particle acceleration. The multiwavelength study of V745 Sco provides new insights into the evolution of the hot plasma in novae and its interaction with the circumstellar material, a powerful tool to understand the nature of the high-energy gamma-ray emission from symbiotic recurrent novae.
Time domain astronomy and the increasing number of exoplanet
candidates call for reliable, robust and automatic wavelength
calibration. We present an algorithm for wavelength calibrating
\'echelle spectrographs that uses only the two-dimensional spectrum and
a list of laboratory wavelengths. Our approach is fully automatic and
does not rely on a-priori knowledge such as the pixel locations of
certain emission lines with which to anchor the wavelength solution, nor
the true order number of each diffraction order. We demonstrate our
method on all four spectrographs in Las Cumbres Observatory's Network of
Robotic \'Echelle Spectrographs (NRES), on the High Accuracy Radial
Velocity Planet Searcher (HARPS) spectrograph, and on synthetic data
modelled after NRES. For NRES, we achieve a velocity-equivalent absolute
precision of ∼10
m/s, limited by not accounting for effects like modal noise and
astigmatism. We achieve ∼1
m/s on HARPS, which agrees with the absolute precision reported by the
HARPS team. On synthetic data of varying quality, we achieve the
velocity precision set by Gaussian centroiding errors. Accordingly, our
algorithm likely holds for a wide range of spectrographs beyond the five
presented here. We provide an open-source Python package, xwavecal (https://github.com/gmbrandt/
Classical Cepheids (CCs) are at the heart of the empirical extragalactic distance ladder. Milky Way CCs are the only stars of this class accessible to trigonometric parallax measurements. Until recently, the most accurate trigonometric parallaxes of Milky Way CCs were the HST/FGS measurements collected by Benedict et al. (2002, 2007). Unfortunately, the second Gaia data release (GDR2) has not yet delivered reliable parallaxes for Galactic CCs, failing to replace the HST/FGS sample as the foundation of all Galactic calibrations of the Leavitt law. We aim at calibrating independently the Leavitt law of Milky Way CCs based on the GDR2 catalog of trigonometric parallaxes. As a proxy for the parallaxes of a sample of 23 Galactic CCs, we adopt the GDR2 parallaxes of their spatially resolved companions. As the latter are unsaturated, photometrically stable stars, this novel approach allows us to bypass the GDR2 bias on the parallax of the CCs that is induced by saturation and variability. We present new Galactic calibrations of the Leavitt law in the J, H, K, V, Wesenheit WH and Wesenheit WVK bands based on the GDR2 parallaxes of the CC companions. We show that the adopted value of the zero point of the GDR2 parallaxes, within a reasonable range, has a limited impact on our Leavitt law calibration. However, we find a significant difference with respect to the calibration based on the HST/FGS parallaxes, that corresponds to an FGS parallax zero point offset of approx. +0.2 mas. The discrepancy that we observe between the GDR2 and HST/FGS parallaxes has important consequences on the existing Galactic calibrations of the Leavitt law. We note that our results translate into a Hubble constant of 68.43 +/- 2.08 km/s/Mpc and 69.30 +/- 2.08 km/s/Mpc for a GDR2 parallax offset of 0.029 mas and 0.046 mas, respectively.
Giant outbursts of Be/X-ray binaries may occur when a Be-star disc undergoes strong eccentricity growth due to the Kozai-Lidov (KL) mechanism. The KL effect acts on a disc that is highly inclined to the binary orbital plane provided that the disc aspect ratio is sufficiently small. The eccentric disc overflows its Roche lobe and material flows from the Be star disc over to the companion neutron star causing X-ray activity. With N-body simulations and steady state decretion disc models we explore system parameters for which a disc in the Be/X-ray binary 4U 0115+634 is KL unstable and the resulting timescale for the oscillations. We find good agreement between predictions of the model and the observed giant outburst timescale provided that the disc is not completely destroyed by the outburst. This allows the outer disc to be replenished between outbursts and a sufficiently short KL oscillation timescale. An initially eccentric disc has a shorter KL oscillation timescale compared to an initially circular orbit disc. We suggest that the chaotic nature of the outbursts is caused by the sensitivity of the mechanism to the distribution of material within the disc. The outbursts continue provided that the Be star supplies material that is sufficiently misaligned to the binary orbital plane. We generalise our results to Be/X-ray binaries with varying orbital period and find that if the Be star disc is flared, it is more likely to be unstable to KL oscillations in a smaller orbital period binary, in agreement with observations.
Type I outbursts in Be/X-ray binaries are usually associated with the eccentricity of the binary orbit. The neutron star accretes gas from the outer parts of the decretion disk around the Be star at each periastron passage. However, this mechanism cannot explain type I outbursts that have been observed in nearly circular orbit Be/X-ray binaries. With hydrodynamical simulations and analytic estimates we find that in a circular orbit binary, a nearly coplanar disk around the Be star can become eccentric. The extreme mass ratio of the binary leads to the presence of the 3:1 Lindblad resonance inside the Be star disk and this drives eccentricity growth. Therefore the neutron star can capture material each time it approaches the disk apastron, on a timescale up to a few percent longer than the orbital period. We have found a new application of this mechanism that is able to explain the observed type I outbursts in low eccentricity Be/X-ray binaries.
The coalescence of double neutron star (NS-NS) and black hole (BH)-NS binaries are prime sources of gravitational waves (GW) for Advanced LIGO/Virgo and future ground-based detectors. Neutron-rich matter released from such events undergo rapid neutron capture (r-process) nucleosynthesis as it decompresses into space, enriching our universe with rare heavy elements like gold and platinum. Radioactive decay of these unstable nuclei powers a rapidly evolving, approximately isotropic thermal transient known as a ``kilonova', which probes the physical conditions during the merger and its aftermath. Here I review the history and physics of kilonovae, leading to the current paradigm of day-timescale emission at optical wavelengths from lanthanide-free components of the ejecta, followed by week-long emission with a spectral peak in the near-infrared (NIR). These theoretical predictions, as compiled in the original version of this review, were largely confirmed by the transient optical/NIR counterpart discovered to the first NS-NS merger, GW170817, discovered by LIGO/Virgo. Using a simple light curve model to illustrate the essential physical processes and their application to GW170817, I then introduce important variations about the standard picture which may be observable in future mergers. These include ~hours-long UV precursor emission, powered by the decay of free neutrons in the outermost ejecta layers or shock-heating of the ejecta by a delayed ultra-relativistic outflow; and enhancement of the luminosity from a long-lived central engine, such as an accreting BH or millisecond magnetar. Joint GW and kilonova observations of GW170817 and future events provide a new avenue to constrain the astrophysical origin of the r-process elements and the equation of state of dense nuclear matter.
I review the basics of the disc instability model (DIM) for dwarf novae and soft-X-ray transients and its most recent developments, as well as the current limitations of the model, focusing on the dwarf nova case. Although the DIM uses the Shakura-Sunyaev prescription for angular momentum transport, which we know now to be at best inaccurate, it is surprisingly efficient in reproducing the outbursts of dwarf novae and soft X-ray transients, provided that some ingredients, such as irradiation of the accretion disc and of the donor star, mass transfer variations, truncation of the inner disc, etc., are added to the basic model. As recently realized, taking into account the existence of winds and outflows and of the torque they exert on the accretion disc may significantly impact the model. I also discuss the origin of the superoutbursts that are probably due to a combination of variations of the mass transfer rate and of a tidal instability. I finally mention a number of unsolved problems and caveats, among which the most embarrassing one is the modelling of the low state. Despite significant progresses in the past few years both on our understanding of angular momentum transport, the DIM is still needed for understanding transient systems.
We obtained radio observations of the symbiotic binary and known recurrent nova T Coronae Borealis following a period of increased activity in the optical and X-ray bands. A comparison of our observations with those made prior to 2015 indicates that the system is in a state of higher emission in the radio as well. The spectral energy distributions are consistent with optically thick thermal bremsstrahlung emission from a photoionized source. Our observations indicate that the system was in a state of increased ionization in the companion wind, possibly driven by an increase in accretion rate, with the radio photosphere located well outside the binary system.
We report spectroscopy and photometry of the cataclysmic variable stars ASASSN-14ho and V1062 Cyg. Both are dwarf novae with spectra dominated by their secondary stars, which we classify as approxomately K4 and M0.5, respectively. Their orbital periods, determined mostly from the secondary stars' radial velociites, proved to be nearly identical, respectively 350.14 +- 0.15 and 348.25 +- 0.60 min. The H-alpha emission line in V1062 Cyg displays a relatively sharp emission component that tracks the secondary's motion, which may arise on the irradiated face of the secondary; tihs is not often seen and may indicate an unusually strong flux of ionizing radiation. Both systems exhibit double-peaked orbital modulation consistent with ellipsoidal variation from the changing aspect of the secondary. We model these variations to constrain the orbital inclination i, and estimate approximate component masses based oni and the secondary velocity amplitude K2.
Aims: AT 2018hso is a new transient showing transitional properties between those of LRNe and the class of intermediate luminosity red transients (ILRTs) similar to SN 2008S. Through the detailed analysis of the observed parameters, our study support that it actually belongs to the LRN class, and was likely produced by the coalescence of two massive stars. Methods: We obtained ten months of optical and near-infrared photometric monitoring, and eleven epochs of low-resolution optical spectroscopy of AT~2018hso. We compared its observed properties with those of other ILRTs and LRNe. We also inspected the archival Hubble Space Telescope (HST) images obtained about 15 years ago to constrain the progenitor's properties. Results: The light curves of AT 2018hso show a first sharp peak (Mr = -13.93 mag), followed by a broader and shallower second peak, that resembles a plateau in the optical bands. The spectra dramatically change with time. Early time spectra show prominent Balmer emission lines and a weak Ca II] doublet, which is usually observed in ILRTs. However, the major decrease in the continuum temperature, the appearance of narrow metal absorption lines, the major change in the Hα strength and profile, and the emergence of molecular bands support a LRN classification. The possible detection of an I ~ -8 mag source at the position of AT 2018hso in HST archive images is consistent with expectations for a pre-merger massive binary, similar to the precursor of the 2015 LRN in M101. Conclusions: We provide reasonable arguments to support a LRN classification for AT~2018hso. This study reveals growing heterogeneity in the observables of LRNe than thought in the past, making sometimes tricky the discrimination between LRNe and ILRTs. This suggests the need of monitoring the entire evolution of gap transients to avoid misclassifications
We present BVRI and unfiltered light curves of 93 Type Ia supernovae (SNe Ia) from the Lick Observatory Supernova Search (LOSS) follow-up program conducted between 2005 and 2018. Our sample consists of 78 spectroscopically normal SNe Ia, with the remainder divided between distinct subclasses (three SN 1991bg-like, three SN 1991T-like, four SNe Iax, two peculiar, and three super-Chandrasekhar events), and has a median redshift of 0.0192. The SNe in our sample have a median coverage of 16 photometric epochs at a cadence of 5.4 days, and the median first observed epoch is ~4.6 days before maximum B-band light. We describe how the SNe in our sample are discovered, observed, and processed, and we compare the results from our newly developed automated photometry pipeline to those from the previous processing pipeline used by LOSS. After investigating potential biases, we derive a final systematic uncertainty of 0.03 mag in BVRI for our dataset. We perform an analysis of our light curves with particular focus on using template fitting to measure the parameters that are useful in standardising SNe Ia as distance indicators. All of the data are available to the community, and we encourage future studies to incorporate our light curves in their analyses.
Novae are the observable outcome of a transient thermonuclear runaway on the surface of an accreting white dwarf in a close binary system. Their high peak luminosity renders them visible in galaxies out beyond the distance of the Virgo Cluster. Over the past century, surveys of extragalactic novae, particularly within the nearby Andromeda Galaxy, have yielded substantial insights regarding the properties of their populations and sub-populations. The recent decade has seen the first detailed panchromatic studies of individual extragalactic novae and the discovery of two probably related sub-groups: the 'faint-fast' and the 'rapid recurrent' novae. In this review we summarise the past 100 years of extragalactic efforts, introduce the rapid recurrent sub-group, and look in detail at the remarkable faint-fast, and rapid recurrent, nova M31N 2008-12a. We end with a brief look forward, not to the next 100 years, but the next few decades, and the study of novae in the upcoming era of wide-field and multi-messenger time-domain surveys.
Recent outburst activity of the symbiotic binary AG Draconis
Authors:Jaroslav Merc, Rudolf Gális, Laurits Leedjärv
Abstract: The symbiotic binary AG Dra regularly undergoes quiescent and active stages which consist of several outbursts repeating with about 360d interval. The recent outburst activity of AG Dra started by the minor outburst in the late spring of 2015 and was definitely confirmed by the outbursts in April 2016 and May 2017. In the presented work, the photometric and… ▽ More
Submitted 15 June, 2018; originally announced June 2018.
Comments: 16 pages, 4 figures, Proceedings of The Golden Age of Cataclysmic Variables and Related Objects IV, 11-16 September 2017. Palermo, Italy
Adrian B. Lucy, Christian Knigge, J. L. Sokoloski
(Submitted on 21 Feb 2018)
In symbiotic binaries, jets and disk winds may be integral to the physics of accretion onto white dwarfs from cool giants. The persistent outflow from symbiotic star MWC 560 (=V694 Mon) is known to manifest as low-ionization broad absorption lines (BALs), most prominently at the Balmer transitions, and as high-ionization BALs from metastable He I*. We report the detection of higher-ionization BALs from C IV, Si IV, N V, and He II in International Ultraviolet Explorer spectra obtained on 1990 April 29-30, when an optical outburst temporarily erased the obscuring 'iron curtain' of absorption troughs from Fe II and similar ions. The C IV and Si IV BALs reached maximum radial velocities at least 1000 km/s faster than contemporaneous Mg II and He II BALs; the same behaviors occur in the winds of quasars and cataclysmic variables. An iron curtain lifts to unveil high-ionization BALs during the P Cygni phase observed in some novae, suggesting by analogy a temporary switch in MWC 560 from persistent outflow to discrete mass ejection. At least three more symbiotic stars exhibit broad absorption with blue edges faster than 1500 km/s; exclusively high-ionization BALs have been reported in AS 304 (=V4018 Sgr), while instead transient Balmer BALs have been reported in Z And and CH Cyg. These BAL-producing fast outflows can have wider opening angles than has been previously supposed. BAL symbiotics are short-timescale laboratories for their giga-scale analogs, broad absorption line quasars (BALQSOs), which display a similarly wide range of ionization states in their winds.
D.Yu. Tsvetkov, S.Yu. Shugarov, I.M. Volkov, N.N. Pavlyuk, O.V. Vozyakova, N.I. Shatsky, A.A. Nikiforova, I.S. Troitsky, Yu.V. Troitskaya, P.V. Baklanov
(Submitted on 31 Dec 2017)
We present UBVRI photometry of the supernova 2017eaw in NGC 6946, obtained in the period from May 14 until December 7, 2017. We derive dates and magnitudes of maximum light in the UBVRI bands and the parameters of the light curves. We discuss colour evolution, extinction and maximum luminosity of SN 2017eaw. Preliminary modeling is carried out, and the results are in satisfactory agreement with the light curves in the UBVRI bands.
Link del documento: https://arxiv.org/pdf/1801.00340.pdf
Ivan L. Andronov
(Submitted on 16 Dec 2017 (v1), last revised 26 Dec 2017 (this version, v2))
Abstract originale The biography of Vladimir Platonovich Tsesevich (11.11.1907 - 28.10.1983), a leader of the astronomy in Odessa from 1944 to 1983, is briefly reviewed, as well as the directions of study, mainly the highlights of the research of variable stars carried out by the members of the scientific school founded by him. The directions of these studies cover a very wide range of variability types - "magnetic" and "non-magnetic" cataclysmic variables, symbiotic, X-Ray and other interacting binaries, classical eclipsers and "extreme direct impactors", pulsating variables from DSct and RR through C and RV to SR and M. Improved algorithms and programs have been elaborated for statistically optimal phenomenological and physical modeling. Initially these studies in Odessa were inspired by ("with a capital letter") Vladimir Platonovich Tsesevich. who was a meticulous Scientist and brilliant Educator, thorough Author and the intelligibly explaining Popularizer, persevering Organizer and cheerful Joker - a true Professor and Teacher. He was "the Poet of the Starry Heavens".
Link del documento: https://arxiv.org/pdf/1712.08489
Jeremy Shears
(Submitted on 14 Dec 2017)
The study of cataclysmic variable stars has long been a fruitful area of co-operation between amateur and professional astronomers. In this Presidential Address, I shall take stock of our current understanding of these fascinating binary systems, highlighting where amateurs can still contribute to pushing back the frontiers of knowledge. I shall also consider the sky surveys that are already coming on stream, which will provide near continuous and exquisitely precise photometry of these systems. I show that whilst these surveys might be perceived as a threat to amateur observations, they will actually provide new opportunities, although the amateur community shall need to adapt and focus its efforts. I will identify areas where amateurs equipped for either visual observing or CCD photometry can make scientifically useful observations.
Link del documento: https://arxiv.org/pdf/1712.05393
U. Munari, D.P.K. Banerje
(Submitted on 7 Dec 2017)
Pre-outburst 2MASS and WISE photometry of Nova Sco 2014 (V1534 Sco) have suggested the presence of a cool giant at the location of the nova in the sky. The spectral evolution recorded for the nova did not however support a direct partnership because no flash-ionized wind and no deceleration of the ejecta were observed, contrary to the behavior displayed by other novae which erupted within symbiotic binaries like V407 Cyg or RS Oph. We have therefore obtained an 0.8-2.5 micron spectra of the remnant of Nova Sco 2014 in order to ascertain if a cool giant is indeed present and if it is physically associated with the nova. The spectrum shows the presence of a M6III giant, reddened by E(B-V)=1.20, displaying the typical and narrow emission-line spectrum of a symbiotic star, including HeI 1.0830 μm with a deep P-Cyg profile. This makes Nova Sco 2014 a new member of the exclusive club of novae that erupt within a symbiotic binary. Nova Sco 2014 shows that a nova erupting witin a symbiotic binary does not always come with a deceleration of the ejecta, contrary to the common belief. Many other similar systems may lay hidden in past novae, expecially in those that erupted prior to the release of the 2MASS all-sky infrared survey, which could be profitably cross-matched now against them.
M13 multiple stellar populations seen with the eyes of Strömgren photometry
A. Savino, D. Massari, A. Bragaglia, E. Dalessandro, E. Tolstoy
(Submitted on 4 Dec 2017)
We present a photometric study of M13 multiple stellar populations over a wide field of view, covering approximately 6.5 half-light radii, using archival Isaac Newton Telescope observations to build an accurate multi-band Stromgren catalogue. The use of the Stromgren index cy permits us to separate the multiple populations of M13 on the basis of their position on the red giant branch. The comparison with medium and high resolution spectroscopic analysis confirms the robustness of our selection criterion. To determine the radial distribution of stars in M13, we complemented our dataset with Hubble Space Telescope observations of the cluster core, to compensate for the effect of incompleteness affecting the most crowded regions. From the analysis of the radial distributions we do not find any significant evidence of spatial segregation. Some residuals may be present in the external regions where we observe only a small number of stars.
Autori:Richard I. Anderson, Adam G. Riess
Data pubblicazione (Submitted on 4 Dec 2017)
State-of-the art photometric measurements of extragalactic Cepheids account for the mean additional light due to chance superposition of Cepheids on crowded backgrounds through the use of artificial star measurements. However, light from stars physically associated with Cepheids may bias relative distance measurements if the changing spatial resolution along the distance ladder significantly alters the amount of associated blending. We have identified two regimes where this phenomenon may occur: Cepheids in wide binaries and open clusters. We estimate stellar association bias using the photometric passbands and reddening-free Wesenheit magnitudes used to set up the Riess et al. (2016) distance scale. For wide binaries, we rely on Geneva stellar evolution models in conjunction with detailed statistics on intermediate-mass binary stars. For the impact of cluster stars, we have compiled information on the frequency of Cepheids occurring in clusters and measured the typical cluster contribution in M31 via deep HST imaging provided by the PHAT project. We find that the dominant effect on the distance scale comes from Cepheids in clusters, despite cluster Cepheids being a relatively rare phenomenon. Wide binaries have a negligible effect on H0 that is on the order of 0.004% for long-period Cepheids observed in the near-infrared or when considering Wesenheit magnitudes. We estimate that blending due to cluster populations has previously resulted in an overestimate of H0 by approximately 0.2%. Correcting for this bias, we obtain H0=73.06±1.76kms−1Mpc−1, which remains in 3.3σ tension with the Planck value. We conclude that stellar association bias does not constitute a limit for measuring H0 with an accuracy of 1%.
Star-disk interactions in multi-band photometric monitoring of the classical T Tauri star GI Tau
Zhen Guo, Gregory J. Herczeg, Jessy Jose, Jianning Fu, Po-Shih Chiang, Konstantin Grankin, Raúl Michel, Ram Kesh Yadav, Jinzhong Liu, Wen-ping Chen, Gang Li, Huifang Xue, Hubiao Niu, Annapurni Subramaniam, Saurabh Sharma, Nikom Prasert, Nahiely Flores-Fajardo, Angel Castro, Liliana Altamirano
(Submitted on 23 Nov 2017)
The variability of young stellar objects is mostly driven by star-disk interactions. In long-term photometric monitoring of the accreting T Tauri star GI Tau, we detect extinction events with typical depths of ΔV∼2.5 mag that last for days-to-months and often appear to occur stochastically. In 2014 - 2015, extinctions that repeated with a quasi-period of 21 days over several months is the first empirical evidence of slow warps predicted from MHD simulations to form at a few stellar radii away from the central star. The reddening is consistent with RV=3.85±0.5 and, along with an absence of diffuse interstellar bands, indicates that some dust processing has occurred in the disk. The 2015 -- 2016 multi-band lightcurve includes variations in spot coverage, extinction, and accretion, each of which results in different traces in color-magnitude diagrams. This lightcurve is initially dominated by a month-long extinction event and return to the unocculted brightness. The subsequent light-curve then features spot modulation with a 7.03 day period, punctuated by brief, randomly-spaced extinction events. The accretion rate measured from U-band photometry ranges from 1.3×10−8 to 1.1×10−10 M⊙ yr−1 (excluding the highest and lowest 5% of high- and low- accretion rate outliers), with an average of 4.7×10−9 M⊙ yr−1. A total of 50% of the mass is accreted during bursts of >12.8×10−9 M⊙ yr−1, which indicates limitations on analyses of disk evolution using single-epoch accretion rates.
Thomas Finzell, Laura Chomiuk, Brian D. Metzger, Frederick M. Walter, Justin D. Linford, Koji Mukai, Thomas Nelson, Jennifer H. S. Weston, Yong Zheng, Jennifer L. Sokoloski, Amy Mioduszewski, Michael P. Rupen, Subo Dong,Sumner Starrfield, C.C. Cheung, Terry Bohlsen, Charles E. Woodward, Gregory B. Taylor, Terry Bohlsen, Christian Buil, Jose Prieto, R. Mark Wagner, Thomas Bensby, I.A. Bond, T. Sumi, D.P. Bennett, F. Abe, N. Koshimoto, D. Suzuki, P., J. Tristram, Grant W. Christie, Tim Natusch, Jennie McCormick, Jennifer Yee, Andy Gould
Data pubblicazione (Submitted on 11 Jan 2017 (v1), last revised 21 Nov 2017 (this version, v2))
Abstract originale It has recently been discovered that some, if not all, classical novae emit GeV gamma rays during outburst, but the mechanisms involved in the production of the gamma rays are still not well understood. We present here a comprehensive multi-wavelength dataset---from radio to X-rays---for the most gamma-ray luminous classical nova to-date, V1324 Sco. Using this dataset, we show that V1324 Sco is a canonical dusty Fe-II type nova, with a maximum ejecta velocity of 2600 km s−1 and an ejecta mass of few ×10−5 M⊙. There is also evidence for complex shock interactions, including a double-peaked radio light curve which shows high brightness temperatures at early times. To explore why V1324~Sco was so gamma-ray luminous, we present a model of the nova ejecta featuring strong internal shocks, and find that higher gamma-ray luminosities result from higher ejecta velocities and/or mass-loss rates. Comparison of V1324~Sco with other gamma-ray detected novae does not show clear signatures of either, and we conclude that a larger sample of similarly well-observed novae is needed to understand the origin and variation of gamma rays in novae.
Link del documento: https://arxiv.org/pdf/1701.03094
Autore Anindita Mondal, G. C. Anupama, U. S. Kamath, Ramkrishna Das, G. Selvakumar, Soumen Mondal
Data pubblicazione (Submitted on 21 Nov 2017)
Abstract originale Optical spectra of the 2006 outburst of RS Ophiuchi beginning one day after discovery to over a year after the outburst are presented here. The spectral evolution is found to be similar to that in previous outbursts. The early phase spectra are dominated by hydrogen and helium (I & II) lines. Coronal and nebular lines appear in the later phases. Emission line widths are found to narrow with time, which is interpreted as a shock expanding into the red giant wind. Using the photoionisation code CLOUDY, spectra at nine epochs spanning 14 months after the outburst peak, thus covering a broad range of ionisation and excitation levels in the ejecta, are modelled. The best-fit model parameters indicate the presence of a hot white dwarf source with a roughly constant luminosity of 1.26 x 10^{37} erg/s. During first three months, the abundances (by number) of He, N, O, Ne, Ar, Fe, Ca, S and Ni are found above solar abundances; abundances of these elements decreased in the later phase. Also presented are spectra obtained during quiescence. Photoionisation model of the quiescence spectrum indicates the presence of a low luminosity accretion disk. The helium abundance is found to be subsolar at quiescence.
Link del documento: https://arxiv.org/pdf/1711.07643
SMHASH: Anatomy of the Orphan Stream using RR Lyrae stars
Autore David Hendel, Victoria Scowcroft, Kathryn V. Johnston, Mark A. Fardal, Roeland P. van der Marel, Sangmo Tony Sohn, Adrian M. Price-Whelan, Rachael L. Beaton, Gurtina Besla, Giuseppe Bono, Maria-Rosa L. Cioni, Gisella Clementini, Judith G. Cohen, Michele Fabrizio, Wendy L. Freedman, Alessia Garofalo, Carl J. Grillmair, Nitya Kallivayalil, Juna A. Kollmeier, David R. Law, Barry F. Madore, Steven R. Majewski, Massimo Marengo, Andrew J. Monson, Jillian R. Neeley, David L. Nidever, Grzegorz Pietrzyński, Mark Seibert, Branimir Sesar, Horace A. Smith, Igor Soszyński, Ian B. Thompson, Andrezej Udalski
Data pubblicazione (Submitted on 13 Nov 2017)
Abstract originale Stellar tidal streams provide an opportunity to study the motion and structure of the disrupting galaxy as well as the gravitational potential of its host. Streams around the Milky Way are especially promising as phase space positions of individual stars will be measured by ongoing or upcoming surveys. Nevertheless, it remains a challenge to accurately assess distances to stars farther than 10 kpc from the Sun, where we have the poorest knowledge of the Galaxy's mass distribution. To address this we present observations of 32 candidate RR Lyrae stars in the Orphan tidal stream taken as part of the Spitzer Merger History and Shape of the Galactic Halo (SMHASH) program. The extremely tight correlation between the periods, luminosities, and metallicities of RR Lyrae variable stars in the Spitzer IRAC 3.6μm band allows the determination of precise distances to individual stars; the median statistical distance uncertainty to each RR Lyrae star is 2.5%. By fitting orbits in an example potential we obtain an upper limit on the mass of the Milky Way interior to 60 kpc of 5.6+1.2−1.1×1011 M⊙, bringing estimates based on the Orphan Stream in line with those using other tracers. The SMHASH data also resolve the stream in line--of--sight depth, allowing a new perspective on the internal structure of the disrupted dwarf galaxy. Comparing with N--body models we find that the progenitor had an initial dark halo mass of approximately 3.2×109 M⊙, placing the Orphan Stream's progenitor amongst the classical dwarf spheroidals.
Link del documento:
https://arxiv.org/pdf/1711.04663
Fourteen candidate RR Lyrae star streams in the inner Galaxy
Autore Cecilia Mateu (1), Justin I. Read (2), Daisuke Kawata (3) ((1) CIDA, (2) University of Surrey, (3) MSSL)
Data pubblicazione (Submitted on 10 Nov 2017)
Abstract originale We apply the GC3 stream-finding method to RR Lyrae stars (RRLS) in the Catalina survey. We find two RRLS stream candidates at >4σ confidence and another 12 at >3.5σ confidence over the Galactocentric distance range 4<D/kpc<26. Of these, only two are associated with known globular clusters (NGC 1261 and Arp2). The remainder are candidate `orphan' streams, consistent with the idea that globular cluster streams are most visible close to dissolution. Our detections are likely a lower bound on the total number of dissolving globulars in the inner galaxy, since many globulars have few RRLS while only the brightest streams are visible over the Galactic RRLS background, particularly given the current lack of kinematical information. We make all of our candidate streams publicly available and provide a new GALSTREAMS Python library for the footprints of all known streams and overdensities in the Milky Way.
Link del documento: https://arxiv.org/pdf/1711.03967
Autore J. van den Eijnden, N. Degenaar, T. D. Russell, J. C. A. Miller-Jones, R. Wijnands, J. M. Miller, A. L. King, M. P. Rupen
Abstract originale We report the discovery of radio emission from the accreting X-ray pulsar and symbiotic X-ray binary GX 1+4 with the Karl G. Jansky Very Large Array. This is the first radio detection of such a system, wherein a strongly magnetized neutron star accretes from the stellar wind of an M-type giant companion. We measure a 9 GHz radio flux density of 105.3±7.3 μJy, but cannot place meaningful constraints on the spectral index due to a limited frequency range. We consider several emission mechanisms that could be responsible for the observed radio source. We conclude that the observed properties are consistent with shocks in the interaction of the accretion flow with the magnetosphere, a synchrotron-emitting jet, or a propeller-driven outflow. The stellar wind from the companion is unlikely to be the origin of the radio emission. If the detected radio emission originates from a jet, it would show that that strong magnetic fields (≥1012 G) do not necessarily suppress jet formation.
Autore K. A. Stoyanov, J. Marti, R. Zamanov, V. V. Dimitrov, A. Kurtenkov, E. Sanchez-Ayaso, I. Bujalance-Fernandez, G. Y. Latev, G. Nikolov
Data pubblicazione (Submitted on 6 Nov 2017)
Abstract originale Here we present quasi-simultaneous observations of the flickering of the symbiotic binary star CH Cyg in U, B and V bands. We calculate the flickering source parameters and discuss the possible reason for the flickering cessation in the period 2010-2013.
Link del documento: https://arxiv.org/pdf/1711.01749
Autore Mariko Kato (Keio Univ.), Izumi Hachisu (Univ. of Tokyo), Hideyuki Saio (Tohoku Univ.)
Data pubblicazione (Submitted on 5 Nov 2017)
Abstract originale The mass growth rate of mass-accreting white dwarfs (WDs) is a key factor in binary evolution scenarios toward Type Ia supernovae. Many authors have reported very different WD mass increasing rates. In this review, we clarify the reasons for such divergence, some of which come from a lack of numerical techniques, usage of old opacities, different assumptions for binary configurations, inadequate initial conditions, and unrealistic mass-loss mechanisms. We emphasize that these assumptions should be carefully chosen in calculating the long-term evolution of accreting WDs. Importantly, the mass-loss mechanism is the key process determining the mass retention efficiency: the best approach involves correctly incorporating the optically thick wind because it is supported by the multiwavelength light curves of novae.
Link del documento: https://arxiv.org/pdf/1711.01529.pdf
Autore Or Graur, David R. Zurek, Armin Rest, Ivo R. Seitenzahl, Benjamin J. Shappee, Robert Fisher, James Guillochon, Michael M. Shara, Adam G. Riess
Data pubblicazione (Submitted on 3 Nov 2017)
Abstract originale The late-time light curves of Type Ia supernovae (SNe Ia), observed >900 days after explosion, present the possibility of a new diagnostic for SN Ia progenitor and explosion models. First, however, we must discover what physical process (or combination of processes) leads to the slow-down of the late-time light curve relative to a pure 56Co decay, as observed in SNe 2011fe, 2012cg, and 2014J. We present Hubble Space Telescope observations of SN 2015F, taken ≈600−920 days past maximum light. Unlike those of the three other SNe Ia, the light curve of SN 2015F remains consistent with being powered solely by the radioactive decay of 56Co. We fit the light curves of these four SNe Ia in a consistent manner and measure possible correlations between the light curve stretch - a proxy for the intrinsic luminosity of the SN - and the parameters of the physical model used in the fit (e.g., the mass ratio of 56Co and 57Co produced in the explosion, or the time at which freeze-out sets in). We propose a new, late-time Phillips-like correlation between the stretch of the SNe and the shape of their late-time light curves, which we parametrize as the difference between their pseudo-bolometric luminosities at 600 and 900 days: ΔL900=log(L600/L900). This model-independent correlation provides a new way to test which physical process lies behind the slow-down of SN Ia light curves >900 days after explosion, and, ultimately, fresh constraints on the various SN Ia progenitor and explosion models.
Link del documento: https://arxiv.org/pdf/1711.01275.pdf
Autore LIGO Scientific Collaboration, Virgo Collaboration, Fermi GBM, INTEGRAL, IceCube Collaboration, AstroSat Cadmium Zinc Telluride Imager Team, IPN Collaboration, The Insight-Hxmt Collaboration, ANTARES Collaboration, The Swift Collaboration, AGILE Team, The 1M2H Team, The Dark Energy Camera GW-EM Collaboration, the DES Collaboration, The DLT40 Collaboration, GRAWITA: GRAvitational Wave Inaf TeAm, The Fermi Large Area Telescope Collaboration, ATCA: Australia Telescope Compact Array, ASKAP: Australian SKA Pathfinder, Las Cumbres Observatory Group, OzGrav, DWF (Deeper, Wider, Faster Program), AST3, CAASTRO Collaborations, The VINROUGE Collaboration, MASTER Collaboration, J-GEM, GROWTH, JAGWAR, Caltech- NRAO, TTU-NRAO, NuSTAR Collaborations, Pan-STARRS, The MAXI Team, TZAC Consortium, KU Collaboration, et al. (26 additional authors not shown)
Data pubblicazione (Submitted on 16 Oct 2017 (v1), last revised 24 Oct 2017 (this version, v2))
Abstract originale On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8−8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Msun. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position ∼9 and ∼16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. (Abridged)
Link del documento: https://arxiv.org/ftp/arxiv/papers/1710/1710.05833.pdf
Autore T. Giannini, U. Munari, S. Antoniucci, D. Lorenzetti, A.A. Arkharov, S. Dallaporta, A. Rossi, G. Traven
Data pubblicazione (Submitted on 23 Oct 2017)
Abstract originale V2492 Cyg is a young pre-main sequence star presenting repetitive brightness variations of significant amplitude (Delta R > 5 mag) whose physical origin has been ascribed to both extinction (UXor-type) and accretion (EXor-type) variability, although their mutual proportion has not been clarified yet. Recently, V2492 Cyg has reached a level of brightness ever registered in the period of its documented activity. Optical and near-infrared photometry and spectroscopy have been obtained in October 2016 and between March and July 2017. The source has remained bright until the end of May 2017, then it started to rapidly fade since the beginning of June at a rate of about 0.08 mag/day. On mid-July 2017 the source has reached the same low-brightness level as two years before. Extinction and mass accretion rate were derived by means of the luminosity of the brightest lines, in particular Halpha and Hbeta. A couple of optical high-resolution spectra are also presented to derive information on the gas kinematics. Visual extinction variations do not exceed a few magnitudes, while the mass accretion rate is estimated to vary from less than 10^-8 up to a few 10^-7 M_sun/yr. This latter is comparable to that estimated on the previous high-state in 2010, likely occurred under more severe extinction conditions. The combined analysis of the optical and near-infrared (NIR) observations extends to the present event the original suggestion that the V2492 Cyg variability is a combination of changing extinction and accretion.
Link del documento: https://arxiv.org/pdf/1710.08151
Autore Or Graur, David R. Zurek, Armin Rest, Ivo R. Seitenzahl, Benjamin J. Shappee, Robert Fisher, James Guillochon, Michael M. Shara, Adam G. Riess
Data pubblicazione (Submitted on 3 Nov 2017)
Abstract originale The late-time light curves of Type Ia supernovae (SNe Ia), observed >900 days after explosion, present the possibility of a new diagnostic for SN Ia progenitor and explosion models. First, however, we must discover what physical process (or combination of processes) leads to the slow-down of the late-time light curve relative to a pure 56Co decay, as observed in SNe 2011fe, 2012cg, and 2014J. We present Hubble Space Telescope observations of SN 2015F, taken ≈600−920 days past maximum light. Unlike those of the three other SNe Ia, the light curve of SN 2015F remains consistent with being powered solely by the radioactive decay of 56Co. We fit the light curves of these four SNe Ia in a consistent manner and measure possible correlations between the light curve stretch - a proxy for the intrinsic luminosity of the SN - and the parameters of the physical model used in the fit (e.g., the mass ratio of 56Co and 57Co produced in the explosion, or the time at which freeze-out sets in). We propose a new, late-time Phillips-like correlation between the stretch of the SNe and the shape of their late-time light curves, which we parametrize as the difference between their pseudo-bolometric luminosities at 600 and 900 days: ΔL900=log(L600/L900). This model-independent correlation provides a new way to test which physical process lies behind the slow-down of SN Ia light curves >900 days after explosion, and, ultimately, fresh constraints on the various SN Ia progenitor and explosion models.
Link del documento: https://arxiv.org/pdf/1711.01275.pdf
Autore I. Fuentes-Morales (1), N. Vogt (1), C. Tappert (1), L. Schmidtobreick (2), F.-J. Hambsch (3), M. Vuĉkovíc (1) ((1) Instituto de Física y Astronomía, Universidad de Valparaíso, Valparaíso, Chile, (2) European Southern Observatory, Santiago, Chile, (3) Vereniging Voor Sterrenkunde (VVS), Belgium)
Data pubblicazione (Submitted on 18 Oct 2017)
Abstract originale We present an analysis of all available time-resolved photometry from the literature and new light curves obtained in 2013-2014 for the old nova RR Pictoris. The well-known hump light curve phased with the orbital period reveals significant variations over the last 42 years in shape, amplitude and other details which apparently are caused by long-term variations in the disc structure. In addition we found evidence for the presence of superhumps in 2007, with the same period (~9% longer than the orbital period), as reported earlier by other authors from observations in 2005. Possibly, superhumps arise quickly in RR Pic, but are sporadic events, because in all the other observing runs analysed no significant superhump signal was detected. We also determined an actual version of the Stolz--Schoembs relation between superhump period and orbital period, analysing separately dwarf novae, classical novae and nova-like stars, and conclude that this relation is of general validity for all superhumpers among the cataclysmic variables (CVs), in spite of small but significant differences among the sub-types mentioned above. We emphasize the importance of such a study in context with the still open question of the interrelation between the different sub-classes of CVs, crucial for our understanding of the long-term CV evolution.
Link del documento: https://arxiv.org/pdf/1710.06543
arXiv 1710.03716
Autore E. Aydi, K. L. Page, N. P. M. Kuin, M. J. Darnley, F. M. Walter, P. Mróz, D. Buckley, S. Mohamed, P. Whitelock, P. Woudt, S. C. Williams, M. Orio, R. E. Williams, A. P. Beardmore, J. P. Osborne, A. Kniazev, V. A. R. M. Ribeiro, A. Udalski, J. Strader, L. Chomiuk
Data pubblicazione (Submitted on 10 Oct 2017)
Abstract originale We report on multiwavelength observations of nova SMCN 2016-10a. The present observational set is one of the most comprehensive for any nova in the Small Magellanic Cloud, including: low, medium, and high resolution optical spectroscopy and spectropolarimetry from SALT, FLOYDS, and SOAR; long-term OGLE V- and I- bands photometry dating back to six years before eruption; SMARTS optical and near-IR photometry from ∼ 11 days until over 280 days post-eruption; Swift satellite X-ray and ultraviolet observations from ∼ 6 days until 319 days post-eruption. The progenitor system contains a bright disk and a main sequence or a sub-giant secondary. The nova is very fast with t2≃ 4.0 ± 1.0 d and t3≃ 7.8 ± 2.0 d in the V-band. If the nova is in the SMC, at a distance of ∼ 61 ± 10 kpc, we derive MV,max≃−10.5 ± 0.5, making it the brightest nova ever discovered in the SMC and one of the brightest on record. At day 5 post-eruption the spectral lines show a He/N spectroscopic class and a FWHM of ∼ 3500 kms−1 indicating moderately high ejection velocities. The nova entered the nebular phase ∼ 20 days post-eruption, predicting the imminent super-soft source turn-on in the X-rays, which started ∼ 28 days post-eruption. The super-soft source properties indicate a white dwarf mass
Link del documento: https://arxiv.org/pdf/1710.03716
Link del documento: https://arxiv.org/pdf/1710.03716.pdf
Autore Nimisha Kantharia (National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune)
Data pubblicazione (Submitted on 27 Sep 2017)
Abstract originale: The study of novae is continued and a self-consistent updated physical model for classical/recurrent novae derived from multi-wavelength observations is presented. In particular, observations of novae support the origin of the optical continuous emission in the outburst ejecta, mass-based segregation and clump formation in the ejecta, origin of the Orion, diffuse enhanced lines and dust in the clumps, prompt Fe II line formation in swept-up material, energising of electrons to relativistic velocities by the explosion and the existence of a large cool envelope around the accreting white dwarf in quiescence. The rapid transfer of thermonuclear energy should be adiabatic which energises and ejects all the particles in the overlying layers. Our study results in the following conclusions which are relevant for novae and other astrophysical systems: (1) Electrons are instantaneously energised to relativistic velocities in the explosion alongside the heavier atoms and ions. No post-ejection shock acceleration needs to be invoked. (2) Rotation of an incompressible spherical accreting object leads to a latitude-dependent potential such that the accretion rate is maximum at the poles and minimum at the equator. This will form a prolate-shaped envelope. Energetic expulsion of this envelope will result in a bipolar ejecta/outflow. Such outflows cannot be ejected from non-rotating spherical objects. (3) The latitude-dependent accretion rates in a rotating accreting object will also lead to accumulation of the infalling matter outside the object in the non-polar regions thus forming an accretion disk. The angular momentum of the incoming matter plays no role in the formation of an accretion disk. Accretion disks cannot form around a non-rotating object.
Link del documento: arXiv:1709.09400
Autore Andreas Hänel, Thomas Posch, Salvador J. Ribas, Martin Aubé, Dan Duriscoe, Andreas Jechow, Zoltán Kollath, Dorien E. Lolkema, Chadwick Moore, Norbert Schmidt, Henk Spoelstra, Günther Wuchterl, Christopher C. M. Kyba
Data pubblicazione (Submitted on 27 Sep 2017)
Abstract originale Measuring the brightness of the night sky has become an increasingly important topic in recent years, as artificial lights and their scattering by the Earths atmosphere continue spreading around the globe. Several instruments and techniques have been developed for this task. We give an overview of these, and discuss their strengths and limitations. The different quantities that can and should be derived when measuring the night sky brightness are discussed, as well as the procedures that have been and still need to be defined in this context. We conclude that in many situations, calibrated consumer digital cameras with fisheye lenses provide the best relation between ease-of-use and wealth of obtainable information on the night sky. While they do not obtain full spectral information, they are able to sample the complete sky in a period of minutes, with colour information in three bands. This is important, as given the current global changes in lamp spectra, changes in sky radiance observed only with single band devices may lead to incorrect conclusions regarding long term changes in sky brightness. The acquisition of all-sky information is desirable, as zenith-only information does not provide an adequate characterization of a site. Nevertheless, zenith-only single-band one-channel devices such as the Sky Quality Meter continue to be a viable option for long-term studies of night sky brightness and for studies conducted from a moving platform. Accurate interpretation of such data requires some understanding of the colour composition of the sky light. We recommend supplementing long-term time series derived with such devices with periodic all-sky sampling by a calibrated camera system and calibrated luxmeters or luminance meters.
Link del documento: https://arxiv.org/pdf/1709.09558
Link del documento: https://arxiv.org/pdf/1706.01474
Autore O. Fehér, Á. Kóspál, P. Ábrahám, M. R. Hogerheijde, C. Brinch
Data pubblicazione (Submitted on 21 Sep 2017)
Abstract originale: FU Orionis-type objects are young, low-mass stars with large outbursts in visible light that last for several years or decades. They are thought to represent an evolutionary phase during the life of every young star when accretion from the circumstellar disk is enhanced during recurring time periods. These outbursts are able to rapidly build up the star while affecting the circumstellar disk and thus the ongoing or future planet formation. In many models infall from a circumstellar envelope seems to be necessary to trigger the outbursts. We observed the J=1−0 rotational transition of 13CO and C18O towards eight northern FU Orionis-type stars (V1057 Cyg, V1515 Cyg, V2492 Cyg, V2493 Cyg, V1735 Cyg, V733 Cep, RNO 1B and RNO 1C) and derive temperatures and envelope masses and discuss the morphology and kinematics of the circumstellar material. We detected extended CO emission associated with all our targets. Smaller scale CO clumps were found to be associated with five objects with radii of 2000−5000 AU and masses of 0.02−0.5 M⊙; these are clearly heated by the central stars. Three of these envelopes are also strongly detected in the 2.7 mm continuum. No central CO clumps were detected around V733 Cep and V710 Cas but there are many other clumps in their environments. Traces of outflow activity were observed towards V1735 Cyg, V733 Cep and V710 Cas. The diversity of the observed envelopes enables us to set up an evolutionary sequence between the objects. We find their evolutionary state to range from early, embedded Class I stage to late, Class II-type objects with very low-mass circumstellar material. The results reinforce the idea of FU Orionis-type stars as representatives of a transitory stage between embedded Class I young stellar objects and classical T-Tauri stars.
Link del documento: https://arxiv.org/pdf/1709.07458.pdf
Link del documento: https://arxiv.org/pdf/1709.06585
Autore Ben Davies, Emma Beasor
Data pubblicazione (Submitted on 18 Sep 2017)
Abstract originale: There are a growing number of nearby SNe for which the progenitor star is detected in archival pre-explosion imaging. From these images it is possible to measure the progenitor's brightness a few years before explosion, and ultimately estimate its initial mass. Previous work has shown that II-P and II-L supernovae (SNe) have Red Supergiant (RSG) progenitors, and that the range of initial masses for these progenitors seems to be limited to <17M⊙. This is in contrast with the cutoff of 25-30M⊙predicted by evolutionary models, a result which is termed the 'Red Supergiant Problem'. Here we investigate one particular source of systematic error present in converting pre-explosion photometry into an initial mass, that of the bolometric correction (BC) used to convert a single-band flux into a bolometric luminosity. We show, using star clusters, that RSGs evolve to later spectral types as they approach SN, which in turn causes the BC to become larger. Failure to account for this results in a systematic underestimate of a star's luminosity, and hence its initial mass. Using our empirically motivated BCs we reappraise the II-P and II-L SNe that have their progenitors detected in pre-explosion imaging. Fitting an initial mass function to these updated masses results in an increased upper mass cutoff of Mhi=19.0+2.5−1.3M⊙, with a 95% upper confidence limit of <27M⊙. Accounting for finite sample size effects and systematic uncertainties in the mass-luminosity relationship raises the cutoff to Mhi=25M⊙ (<33M⊙, 95% confidence). We therefore conclude that there is currently no strong evidence for `missing' high mass progenitors to core-collapse SNe.
Link del documento: https://arxiv.org/pdf/1709.06116
Autore David A. Principe, Lucas Cieza, Antonio Hales, Alice Zurlo, Jonathan Williams, Dary Ruiz-Rodriguez, Hector Canovas, Simon Casassus, Koraljka Muzic, Sebastian Perez, John J. Tobin, Zhaohuan Zhu
Data pubblicazione 8 Sep 17
Abstract originale We present Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of the star-forming environment surrounding V1647 Ori, an outbursting FUor/EXor pre-MS star. Dust continuum and the (J = 2 - 1) 12CO, 13CO, C18O molecular emission lines were observed to characterize the V1647 Ori circumstellar disc and any large scale molecular features present. We detect continuum emission from the circumstellar disc and determine a radius r = 40 au, inclination i = 17∘+6−9 and total disc mass of Mdisk of ~0.1 M⊙. We do not identify any disc structures associated with nearby companions, massive planets or fragmentation. The molecular cloud environment surrounding V1647 Ori is both structured and complex. We confirm the presence of an excavated cavity north of V1647 Ori and have identified dense material at the base of the optical reflection nebula (McNeil's Nebula) that is actively shaping its surrounding environment. Two distinct outflows have been detected with dynamical ages of ~11,700 and 17,200 years. These outflows are misaligned suggesting disc precession over ~5500 years as a result of anisotropic accretion events is responsible. The collimated outflows exhibit velocities of ~2 km s−1, similar in velocity to that of other FUor objects presented in this series but significantly slower than previous observations and model predictions. The V1647 Ori system is seemingly connected by an "arm" of material to a large unresolved structure located ~20" to the west. The complex environment surrounding V1647 Ori suggests it is in the early stages of star formation which may relate to its classification as both an FUor and EXor type object.
Link del documento: https://arxiv.org/pdf/1709.01924
arXiv 1709.01205
Autore L. Takeda, M. Diaz, R. Campbell, J. Lyke
Data pubblicazione (Submitted on 5 Sep 2017
Abstract originale We present modeling and analysis of the ejecta of nova V723 Cas based on spatially resolved IR spectroscopic data from Keck-OSIRIS, with LGSAO (adaptive optics module). The 3D photoionization models include the shell geometry taken from the observations and an anisotropic radiation field, composed by a spherical central source and an accretion disk. Our simulations indicate revised abundances log(NAl/NH)=−5.4, log(NCa/NH)=−6.4 and log(NSi/NH)=−4.7 in the shell. The total ejected mass was found as Mshell=1.1×10−5 M⊙ and the central source temperature and luminosity are T=280,000 K and L=1038 erg/s. The 3D models are compared to basic 1D simulations to demonstrate the importance of using more realistic treatments, stressing the differences in the shell mass, abundances and characterization of the central source. The possibility of V723 Cas being a neon nova and the puzzling central source features found are discussed.
Link del documento:
https://arxiv.org/pdf/1709.01205
Autore Kwan-Lok Li, Brian D. Metzger, Laura Chomiuk, Indrek Vurm, Jay Strader, Thomas Finzell, Andrei M. Beloborodov, Thomas Nelson, Benjamin J. Shappee, Christopher S. Kochanek,Jose L. Prieto, Stella Kafka, Thomas W.-S. Holoien, Todd A. Thompson, Paul J. Luckas, Hiroshi Itoh
Data pubblicazione (Submitted on 3 Sep 2017)
Abstract originale Classical novae are runaway thermonuclear burning events on the surfaces of accreting white dwarfs in close binary star systems, sometimes appearing as new naked-eye sources in the night sky. The standard model of novae predicts that their optical luminosity derives from energy released near the hot white dwarf which is reprocessed through the ejected material. Recent studies with the Fermi Large Area Telescope have shown that many classical novae are accompanied by gigaelectronvolt gamma-ray emission. This emission likely originates from strong shocks, providing new insights into the properties of nova outflows and allowing them to be used as laboratories to study the unknown efficiency of particle acceleration in shocks. Here we report gamma-ray and optical observations of the Milky Way nova ASASSN-16ma, which is among the brightest novae ever detected in gamma-rays. The gamma-ray and optical light curves show a remarkable correlation, implying that the majority of the optical light comes from reprocessed emission from shocks rather than the white dwarf. The ratio of gamma-ray to optical flux in ASASSN-16ma directly constrains the acceleration efficiency of non-thermal particles to be ~0.005, favouring hadronic models for the gamma-ray emission. The need to accelerate particles up to energies exceeding 100 gigaelectronvolts provides compelling evidence for magnetic field amplification in the shocks.
Link del documento: https://arxiv.org/pdf/1709.00763
Autore Aykut Özdönmez, Tolga Güver, Antonio Cabrera-Lavers, Tansel Ak
Data pubblicazione (Submitted on 6 Jun 2016 (v1), last revised 28 Aug 2017 (this version, v3))
Abstract originale Utilising the unique location of red clump giants on colour-magnitude diagrams obtained from various near-IR surveys, we derived specific reddening-distance relations towards 119 Galactic novae for which independent reddening measurements are available. Using the derived distance-extinction relation and the independent measurements of reddening we calculated the most likely distances for each system. We present the details of our distance measurement technique and the results of this analysis, which yielded the distances of 73 Galactic novae and allowed us to set lower limits on the distances of 46 systems. We also present the reddening-distance relations derived for each nova, which may be useful to analyze the different Galactic components present in the line of sight.
Link del documento: https://arxiv.org/pdf/1606.01907.pdf
Autore Michele Trabucchi (1), Peter R. Wood (2), Josefina Montalbán (1), Paola Marigo (1), Giada Pastorelli (1), Léo Girardi (3) ((1) Department of Physics and Astronomy G. Galilei, University of Padova, (2) Research School of Astronomy and Astrophysics, Australian National University, (3) OAPD-INAF)
Data pubblicazione (Submitted on 30 Aug 2017)
Abstract originale Period-luminosity (PL) sequences of long period variables (LPVs) are commonly interpreted as different pulsation modes, but there is disagreement on the modal assignment. Here, we re-examine the observed PL sequences in the Large Magellanic Cloud, including the sequence of long secondary periods (LSPs), and their associated pulsation modes. Firstly, we theoretically model the sequences using linear, radial, non-adiabatic pulsation models and a population synthesis model of the LMC red giants. Then, we use a semi-empirical approach to assign modes to the pulsation sequences by exploiting observed multi-mode pulsators. As a result of the combined approaches, we consistently find that sequences B and C′ both correspond to first overtone pulsation, although there are some fundamental mode pulsators at low luminosities on both sequences. The masses of these fundamental mode pulsators are larger at a given luminosity than the mass of the first overtone pulsators. These two sequences B and C′ are separated by a small period interval in which large amplitude pulsation in a long secondary period (sequence D variability) occurs, meaning that the first overtone pulsation is not seen as the primary mode of pulsation. Observationally, this leads to the splitting of the first overtone pulsation sequence into the two observed sequences B and C′. Our two independent examinations also show that sequences A′, A and C correspond to third overtone, second overtone and fundamental mode pulsation, respectively.
Link del documento: https://arxiv.org/pdf/1708.09350
Autore Melissa L. Graham, Sahana Kumar,Griffin Hosseinzadeh, Daichi Hiramatsu, Iair Arcavi, D. Andrew Howell, Stefano Valenti, David J. Sand,Jerod T. Parrent, Curtis McCully, Alexei V. Filippenko
Data pubblicazione(Submitted on 25 Aug 2017)
Abstract originale We present late-time spectra of eight Type Ia supernovae (SNe Ia) obtained at >200 days after peak brightness using the Gemini South and Keck telescopes. All of the SNe Ia in our sample were nearby, well separated from their host galaxy's light, and have early-time photometry and spectroscopy from the Las Cumbres Observatory (LCO). Parameters are derived from the light curves and spectra such as peak brightness, decline rate, photospheric velocity, and the widths and velocities of the forbidden nebular emission lines. We discuss the physical interpretations of these parameters for the individual SNe Ia and the sample in general, including comparisons to well-observed SNe Ia from the literature. There are possible correlations between early-time and late-time spectral features that may indicate an asymmetric explosion, so we discuss our sample of SNe within the context of models for an offset ignition and/or white dwarf collisions. A subset of our late-time spectra are uncontaminated by host emission, and we statistically evaluate our nondetections of Hαemission to limit the amount of hydrogen in these systems. Finally, we consider the late-time evolution of the iron emission lines, finding that not all of our SNe follow the established trend of a redward migration at >200 days after maximum brightness.
Link del documento: https://arxiv.org/pdf/1708.07799.pdf